Search our site

Custom Search

Friday, 18 February 2022

Why do Narwhals have tusks?

Narwhals, the unicorns of the sea, have large tusks (which are actually large canine teeth) protruding from their foreheads. Each tusk holds 10 million nerve endings. But what do they do? Narwhals have not been observed fencing with them for territory, food or mates, or using them to cut things or defend against enemies. Scientists think they may be sensors, sensing changes in pressure, salinity and water chemistry.
 
Narwhal illustration. Strangely, there are few good pictures of these animals as they spend most of their time partially submerged. PublicDomainPictures.net
 

Friday, 4 February 2022

Green ammonia

Ammonia may be a chemical you don't think about very much but, perhaps, you should...

75-90% of all the ammonia made is used to make fertiliser, which is used to grow 50% of global food. Other industries that use it include pharmaceuticals, plastics, textiles, and explosives. We call it a “nexus molecule”.

But it's more than just that. Ammonia might be used in the future as a chemical energy store, costing energy to make and releasing it when its burnt. Better than other materials such as hydrogen, it's nowhere near as flammable nor as expensive to keep liquid, requiring achievable pressures of 10-15 bar or -33°C.

Can we decarbonise industry? Image credit: Richard Hurd

It also has the potential to put a massive dent in our greenhouse gas emissions and could be critical to achieving net zero carbon by 2050 – the current global target. This is because of one of its main ingredients, hydrogen: made by steam reforming the fossil fuel methane, it contributes ~1.8% of global carbon dioxide emissions. We could replace this with blue hydrogen, using carbon capture and storage of all CO2 emissions to achieve net zero carbon, or better – green hydrogen, generated from water via electrolysis and 100% renewable energy resources.

We can also massively improve the synthesis of ammonia from hydrogen and nitrogen, using lower pressures and temperatures, or exploring fascinating biochemical or electrochemical methods, where scientists employ bacterial enzymes or metal catalysts (perhaps nanocatalysts) to make it from nitrogen. These processes are still in the works, but have the potential to entirely reform the way we see green chemistry.

Bring on the ammonia revolution!

To find out more about green ammonia, check out our new article on the topic.

 

Thursday, 13 January 2022

The cannibal in the ocean

I’ve just learnt about a new shark – Orthacanthus – and maybe it’s Latin name will give you a clue as to why I hadn’t heard of it before: it’s extinct. But even when animals are long gone, the mysteries they leave in the ripples behind them continue to fascinate scientists. And all of us.
 
Orthacanthus. SaberrexStrongheart via chondrichthyes.fandom.com/wiki.

Tuesday, 14 December 2021

Wielding (quantum) fields!

Quantum field theory takes an infinite number of field configurations and add them up with the proper weighting to come to a single conclusion. The Standard Model is one well-known example, but this could be much, much more useful. For example, we could predict readings on compasses – something we can’t do right now – at different altitudes as climbers go up mountains. It might sound simple, but gravity, and all the infinite number of fields generated by planet earth, are actually incredibly complicated.
 
Gaussian free field model by Samuelswatson via Wikipedia.

Friday, 3 December 2021

What has Juno found on Jupiter? Part II – It’s magnetic

Built with a 20 radius and designed to spin, Juno is made to measure the magnetic field of Jupiter. Thanks to Juno, we now know that the planet’s dipole is the opposite way round (North and South) to Earth, and tilted ~10o from its rotational axis. The strength of the magnetic field (20 x that of Earth’s!) allows us to calculate how long a day is on Jupiter – because we can’t tell just by looking at the bands: they seem to move in opposite directions to each other and at different speeds! It also allows Jupiter to deflect solar winds as far out as 6 million km from the planet and hold onto its atmosphere. At this point, we also see weird effects that Juno is attempting to explain, such as ring-like features, known as Kelvin-Helmholtz instabilities, which scientists think may travel along the planet’s magnetic field lines. As well as the dipole, these include weaker quadrupoles and octupoles.
 
Jupiter's magnetosphere showing the Io Plasma Torus (in red). Yned via Wikipedia Commons.

Wednesday, 17 November 2021

What has Juno found on Jupiter? Part I – Water and weather

One of Juno’s findings has been some measurements of the Great Red Spot – a giant Jovian storm that could fit three Earth-sized planets inside it. Although Juno has the power to image up to 350 km deep into the Jovian atmosphere, it turns out that the Great Red Spot is deeper than this. Measurements of its temperature show that, for the first 80 km, it is cooler than the surrounding atmosphere, and below that, it’s warmer. We don’t know why, but it could be linked to how the storm started, and whether it's permanent or will disappear with time.
 
The Great Red Spot has been observed for over 300 years now. It's so large it could accommodate three Earth-sized planets! Wikimedia Commons

Sunday, 7 November 2021

Moving moss

In glacial landscapes across the world, small balls of moss form, oval in shape, and tumble simultaneously as the glaciers melt, as if moving in a herd.

Known as “glacier mice”, these moss balls are understudied, but recently researchers have taken notice of them and their weird, herd-like behaviour[1]. This has led to all sorts of questions and a couple of published papers on the phenomenon, such as...

How do they form?

Researchers have theorised that the moss balls form through “nucleation” at rough points on the glacier surface – just as crystals start growing on impurities in their containers. First, one crystal or drifting moss fragment attaches, and then others attach onto that, gradually coming together to make the shape of the final structure. It’s not clear how this always leads to oval balls, and none of them are round, but it does generally make sense as a theory.

Wednesday, 27 October 2021

Transphytoism

You’ve heard of transhumanism? The concept of modifying humans with technology to make ourselves stronger and more able. Some people have argued that that’s exactly what prosthetics are, whilst others think the tech has to advance further. But, can we do it with plants?

New tech has ripped bits out of a venus fly trap and integrated them into a new robot to mechanise a grabbing claw. It is, if you like, a Frankenstein’s monster of the plant world, a terminator to terrorise all triffids. Or, you know, a cool little gadget. A bit like a litter-picker.