The Nobel-prize winning buckminsterfullerene, C60, discovery took place in September 1985. Its discoverers were Professor Harry Kroto, along with Richard Smalley and Robert Curl – but this wasn’t what they were looking for.
Kroto was interested in space. He was working on carbon-based molecules that could be detected in interstellar space using radio telescopes... and he thought he’d found good evidence for cyanopolyynes, molecules based on a chain of carbon and nitrogen atoms, but he still didn’t know how they were made. Kroto had had a good think about it, though, and one idea he had was that they were made by red giants, or near them. He’d have to test his theory, but how?
Smalley and Curl had a laser-generated supersonic cluster beam for their research on semiconductors; this had the potential to heat something up hotter than the surface of most stars. Kroto thought doing this to a bit of carbon would be a fantastic idea, and would potentially make a whole bunch of new stuff, including the mysterious cyanopolyynes. He persuaded them to let him have a go.
NASA, ESA, and A. Simon (Goddard Space Flight Center) |
Kroto was interested in space. He was working on carbon-based molecules that could be detected in interstellar space using radio telescopes... and he thought he’d found good evidence for cyanopolyynes, molecules based on a chain of carbon and nitrogen atoms, but he still didn’t know how they were made. Kroto had had a good think about it, though, and one idea he had was that they were made by red giants, or near them. He’d have to test his theory, but how?
Smalley and Curl had a laser-generated supersonic cluster beam for their research on semiconductors; this had the potential to heat something up hotter than the surface of most stars. Kroto thought doing this to a bit of carbon would be a fantastic idea, and would potentially make a whole bunch of new stuff, including the mysterious cyanopolyynes. He persuaded them to let him have a go.