Search our site

Custom Search

Monday, 13 October 2014

India's MOM seeks answers

In 2010 the Indian Space Research Organisation (ISRO) began a mission to send a spacecraft to orbit Mars – the Mars Orbiter Mission (MOM). Three years later they launched the craft and finally, on 24th September 2014 it reached its destination. The spacecraft’s primary objective is to test and develop the necessary technologies needed for interplanetary space travel - a technology which will allow India to plan future missions through the solar system and beyond. Its secondary objective, though, is scientific research. As the craft orbits the planet it will be collecting data about the planet’s atmosphere and surface.

The journey to Mars, though relatively short compared to a journey to other planets, is a complicated one; out of the 23 missions which have been launched to orbit Mars, only 10 have been fully successful. For India, this maiden voyage means the chance to explore the red planet whilst also developing their technological know-how. The whole mission has cost ISRO about $70 million - making it the cheapest vessel to enter Mars’ orbit since exploration of the planet began! For comparison, NASA had to pay a similar amount per seat to fly their own astronauts to the International Space Station in a Russian spacecraft. This is an incredible feat for technology and may lead to reduced costs for future missions to Mars.

Mars Orbiter Mission - India - ArtistsConcept
An artist's impression of the Mars Orbiter Mission spacecraft orbiting Mars. The basic structure was based closely on ISRO’s first mission - Chandrayaan-1. Image credit: Nesnad, via Wikimedia Commons. (CC-BY-SA-3.0)

Mars is the outermost of the four rocky planets in our Solar System, and is also Earth’s neighbour. Despite having similar rocky compositions these two planets couldn’t be more different. The oceans, flora and fauna which are so prevalent on Earth are completely absent on Mars, and yet the two planets’ orbits are separated by a mere 54.6 million kilometres – a galactic stone’s throw away. Astronomers and planetary scientists have been studying the planet for a while now, and yet there is still so much we cannot decipher about the planet and its history.

Tuesday, 7 October 2014

Cosmic Inflation, BICEP2 and Planck

Cosmic inflation is the exponential expansion of space in the early universe. In other words, how did the universe go from being so small at the time of the big bang to the size it is today?

But why do we even think this occurred? In the 1920's, astronomer Edwin Hubble noticed when looking at galaxies through a telescope, that the galaxies were actually moving away from one another. The further apart they were, the faster they moved.

The only logical explanation for this was that the universe was in fact expanding. If everything seemed to be moving away from each other in all sorts of directions, then surely at some point in the past, it must have been very small, hot and dense. This led to what we now know as the Big Bang Theory, so called because of the implication that the universe began a single point and exploded outwards.

time line of the universe, from big bang to today. Public domain image courtesy NASA.
The Big Bang is believed to have occurred 13.7 billion years ago, after which the universe rapidly expanded in a period of time we call Inflation. Scientists are still searching for conclusive evidence of this, and seek to test the two fundamental assumptions upon which it is based; that the same physical laws apply everywhere in the universe, and that on large scales on large scales the universe is homogeneous and isotropicImage credit: NASA (public domain)

Everywhere we look in the universe, we see billions of galaxies evenly spread. Up until 1979, nobody could explain why this was. That was until a young cosmologist by the name of Alan Guth put forward a possible solution to the problem; he called it inflation.

Monday, 6 October 2014

Science Writing Workshop

One of our recent pledges was to run a series of "how to write about science" workshops, designed to help kick-start careers in science journalism; and we're already working on our first such workshop.

UKSEDS TWDK science communication workshop banner


TWDK have teamed up with the UK's largest student space society, UKSEDS, to offer a science writing workshop aimed at university students. In a hands-on session lasting from 10am til 4pm, we will cover all the basics you need to get you started in science journalism including:

  • Language use – technical science writing is very different from popular science writing. This activity covers how to get your tone right, tailor your writing style to different audiences and age groups.
  • Picking a story – regular writing needs inspiration, but how do you find suitable topics? This activity covers how to find and read press releases, and practice choosing which ones are suitable for you to build upon.
  • “Good” vs “bad” science writing – what makes a piece of science writing good, or bad? We look at some common mistakes and pitfalls, and discuss how to identify and avoid them.
  • Writing from a science paper – published science papers are a common starting point for science journalists, but understanding them can be tricky if you’re not a specialist in that area. Learn some tips on how to read papers to extract the key points you need, and practice writing summaries of a number of real papers in a variety of topics.
  • Editing articles – no first draft will be perfect, and articles always need to be edited. Often this will be done by somebody else, and editing other people’s work can help you understand both the process and alternative styles that may strengthen your own writing.
  • Starting a blog - how to get started in the world of science blogging; setting up your own blog or joining a network both have their own advantages. We look at guest blogging, common sites, what you need to set up your own blog and some useful tools.

Tuesday, 30 September 2014

TWDK makes two "Your Life" pledges

Your life STEM campaign logo
Helping young people to discover a passion for science that takes them to university and beyond is an important part of our mission here at TWDK.

So I'm very happy to announce that Things We Don't Know is one of 200 British businesses that are pledging their support for the Your Life campaign, with the purpose of inspiring young people to study maths and physics as a gateway to exciting and wide-ranging careers.

Specifically, TWDK is making the following two pledges:

Tuesday, 23 September 2014

Ten Things We Don’t Know about Tyrannosaurs

Tyrannosaurus rex and its closest relatives, the tyrannosaurs, are among the best known and most popular dinosaurs - and yet there is still plenty we don’t know about these fascinating creatures...

Photograph of "Sue", a Tyrannosaurus Rex at the Field Museum of Natural History in Chicago, IL.
Despite its name, we don't know if the T-rex we know as "Sue" was male or female. Dinosaurs aren’t sexually dimorphic, including T. rex; their skeletons provide no clue as to their gender. The only evidence we have of a particular specimen's sex comes from either finding eggs inside of a skeleton, or finding medullary bone in long bones. Medullary bone has been found in only one T. rex so far. Image credit: Heather Paul (CC-BY-ND)

1. What age could T. rex live to?

It's possible to work out how old a tyrannosaur was when it died, by looking at growth rings inside its bones - just like counting the rings of a tree. The oldest T. rex yet examined in this way has been nicknamed Sue, and is on display at the Field Museum. It’s thought that Sue was 28 years old[1] when it died. Only about a dozen skeletons have been cut up to determine their age, and there are other T. rex’s that look like they might be older than Sue, but haven't had their growth rings counted. This means that we really don’t exactly know the maximum age of T. rex; it's possible that it will turn out to be much more than 28 years once the sample of adults has increased.

2. How were tyrannosaurs related?

Evolutionary trees are diagrams that can be drawn to show how animals are related to each other. Researchers gather data and use this to try to reconstruct the evolutionary history of a group of species - but it isn’t always simple. At the moment there are two versions of the evolutionary tree of tyrannosaurs[2][3] which differ in which species they include, and where they appear on the tree. As more data is collected, trees produced by different groups of researchers usually become more similar. It is likely that with more time and research we will, eventually, find a history that all of the available data supports. Until then though, how tyrannosaurs evolved remains something we don’t know.

3. What did their eggs, embryos, & hatchlings look like?

Despite the popularity of tyrannosaurs, we don’t know anything about the earliest growth stages of any tyrannosaur species. Currently, there are no skulls or skeletons of embryos or juveniles up to a year old. We don’t even know what a tyrannosaur eggshell looks like - very few embryos have been discovered inside fossilised eggs, which is the only way we could be certain of the species the egg belonged to, so the number of dinosaur species identified in this way is very low. It could be that tyrannosaur eggs have already been collected (among those that currently lack embryonic bones) but we just haven’t realised it yet! Hopefully this situation, at least for eggs and embryos, will change very soon as dinosaur eggs are being discovered all the time in places such as China.

Monday, 15 September 2014

Wondering about water

One day back in the last century (literally) while I was working on my PhD, I went on an expedition into the University’s library archive. I remember it as a dusty cavern with rows of metal shelves creaking under the weight of volumes that smelled of old paper. You had to get a special key to get in, and I remember nervously looking over my shoulder just in case the lights flickered out and my life turned into a cheesy horror movie. I can’t remember what I was actually looking for now, but what I do remember is that I got diverted. In an ancient, dusty volume I found a paper which had been written about a hundred years ago, at the start of the 20th century.

It concerned the structure of water, its bonding and the shape of the molecules. It was a bit of a revelation at the time. I had been drawing the classic ‘Mickey Mouse’ water molecule diagram for years and I’d just never thought about the fact that there was a time when the structure of water was an unknown. Something that people argued over and, indeed, published papers about.

Now, fast forward a few years, and Things We Don’t Know have asked me to write about water clusters, something which is currently at the edges of chemistry. It almost seems meant to be.

Diagram of water molecule H20 showing pairing of electrons, electron sharing between atoms or covalent bonding, and the effective dipole moment of the molecule. Image copyright Things We Don't Know (CC BY 3.0).
Scientists use the "delta" symbol δ to mean “a little bit”. Oxygen is very electronegative, which means it draws the electrons it's sharing with hydrogen (in a covalent bond) towards itself. This leaves the hydrogens slightly positive and the oxygen slightly negative. You might also think it resembles a famous cartoon character, but we couldn't possibly comment. Image ©Things We Don't Know (CC BY 3.0)

Water is important stuff. Without it, life wouldn’t have evolved on this planet. It’s made up of one atom of oxygen and two atoms of hydrogen, joined together with the oxygen in the middle as H-O-H. One of these elements, oxygen, is the second most electronegative element (topped only by its periodic table neighbour fluorine). Electronegativity is a much-abused term in the world of pseudoscience; all it actually means is the ability of an atom to attract electrons in a covalent bond. Hydrogen is far from the least electronegative, but it’s pretty wimpy by comparison. So basically, examine a water molecule and you find that oxygen has greedily dragged the bonding electrons around itself, like a child refusing to share her sweets with the poor, deprived hydrogen atoms.

Thursday, 28 August 2014

The 3QD Science Prize 2014

We're very happy to report that one of our articles - Squid Lady Parts - is one of 85 articles nominated for this year's 3 Quarks Daily Science Prize.

The first round is open to public vote, so please go there and show your support for us! The other 84 articles are really good too, so we heartily recommend reading them all.

For those of our readers who aren't familiar with 3 Quarks Daily it's a selective aggregation service, or in their words a filter blog. In other words, they share content they like from other sites. Six days a week (Tuesday through Sunday) their editors share items from other websites in the areas of science, design, literature, current affairs, art, and anything else they consider to be inherently fascinating. On Mondays, they publish original material written by themselves.

The 20 most popular articles will then go through to the next round, with the winners being determined by Frans B. M. de Waal - a Dutch/American biologist and primatologist known for his work on the behaviour and social intelligence of primates.

Voting is open until 11:59pm on September 1st, NYC time - which is 5am on September 2nd for the UK.

Edit 04 Sep 2014:
We made it through to the semi-finals!

Our article was the 6th most-voted-for entry of the competition! The editors of 3QD will now make a selection of 6 to 9 articles, which will be passed to Dr. de Waal for the final decision.

A big thank you from all of us to everybody that voted for Squid Lady Parts!

Monday, 18 August 2014

Thinking about Things We Don't Know

Things We Don't Know Venn diagram

Since starting in June, I’ve had a lot of fun with Ed and the team here at Things We Don’t Know. I’ve learnt a lot about where research is headed in several different fields, and I’ve spoken to some pretty cool people about what they do in research. I’ve learnt many things from this internship, here are a few of the less science-y (kind of) things:
  1. There are so many things we don’t know!
  2. Seems kind of obvious, what with common sayings such as, “We know more about space than our oceans”. However, I didn’t realise there are things we don’t about almost everything. Birds, ocean currents, the inner workings of our own minds – we are constantly learning more and more about our own surroundings despite them being the most familiar things to us, and working here has made me so much more aware of that fact.

  3. Priority is key
  4. I used to think time-management was a fairly good skill of mine, until I realised I was keeping up with the small things but not necessarily being on top of everything. Sometimes you have to sacrifice smaller jobs for later, to be able to get a big task done on time. Recognising the importance of each task is a little more difficult – sometimes it relies purely on the deadline. Once you’ve nailed that side of things managing your time effectively becomes much more of a doddle.

  5. Be a zombie
  6. I don’t mean walk around slowly dribbling a bit, I’m talking about eating brains! I’ve been working with people who are experts in many different fields. Picking these big brains has been a huge perk of this job, I’ve learnt many useful tips and tricks which I can now take and use in whichever job I end up doing. People don’t generally mind having their brains picked either, everyone here has been more than happy to teach me.